Social Influence: Friedkin, Construct, Siena

Prof. Kathleen M. Carley

kathleen.carley@cs.cmu.edu

bruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR. CMU

Carnegie Mellon

Social Influence

- Social influence models assume that individuals' opinions are formed in a process of interpersonal negotiation and adjustment of opinions.
 - Can result in either consensus or disagreement
 - Looks at interaction among a system of actors
- Attitudes are a function of two sources:
 - Individual characteristics
 - Gender, Age, Race, Education, Etc. Standard sociology
 - Interpersonal influences
 - · Actors negotiate opinions with others

bruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

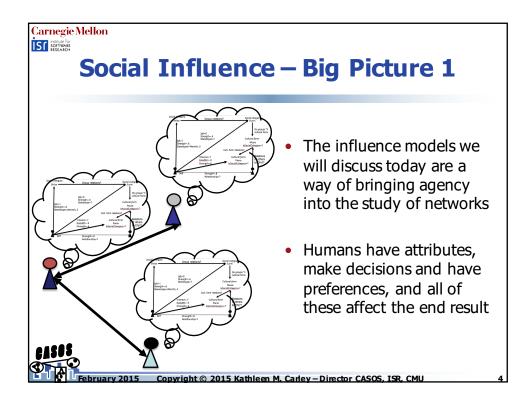
Social Influence – Big Picture 0

- All three models we discuss today have underlying theory/methods and a tool that implements them
 - Friedkin's social influence theory and tools to implement it
 - The theory of Constructuralism and the simulation engine Construct
 - Siena as a method for estimating stochastic actororiented models based on panel data and Siena as a tool for doing the same

91505 30 18

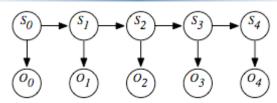
ebruary 2015

Copyright © 2015 Kathleen M. Carley - Director CASOS, ISR. CML



IST institute for SOFTWARE

Social Influence – Big Picture 2



The social influence models we will study today all make *Markovian* assumptions about social processes

A Markov model assumes that everything we need to understand the current state of a system is given to us by the immediately previous state

The form of these assumptions and how they use available data define the approach

February 2015

Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon

Friedkin Formal (Markov) Model

$$\mathbf{Y}^{(1)} = \mathbf{X}\mathbf{B}$$

$$\mathbf{Y}^{(t)} = \alpha \mathbf{W} \mathbf{Y}^{(T-1)} + (1-\alpha) \mathbf{Y}^{(1)}$$

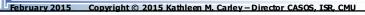
Y⁽¹⁾ = an N x M matrix of initial opinions on M issues for N actors

X = an N x K matrix of K exogenous variable that affect Y

 $\mathbf{B} = \mathbf{a} \mathbf{K} \times \mathbf{M}$ matrix of coefficients relating X to Y

α = a weight of the strength of endogenous interpersonal influences

W = an N x N matrix of interpersonal influences



IST institute for SOFTWARE RESEARCH

$$\mathbf{Y}^{(1)} = \mathbf{X}\mathbf{B}$$

Standard model for explaining anything: the General Linear Model.

The dependent variable (Y) is some function (B) of a set of independent variables (X).

For each agent:

$$Y_i = \sum_k X_{ik} B_k$$

Usually, one of the X variables is ε , the model error term.

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon

Basic Peer Influence Model

$$\mathbf{Y}^{(t)} = \alpha \mathbf{W} \mathbf{Y}^{(T-1)} + (1-\alpha) \mathbf{Y}^{(1)}$$
(2)

This part of the model taps social influence. It says that each person's final opinion is a weighted average of their own initial opinions

$$(1-\alpha)\mathbf{Y}^{(1)}$$

And the opinions of those they communicate with (which can include their own current opinions)

$$\alpha \mathbf{W} \mathbf{Y}^{(T-1)}$$

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

IST institute for SOFTWARE RESEARCH

... and the network aspect w

W is a matrix of interpersonal weights.

W is a function of the communication structure of the network, Often a transformation of the adjacency matrix.

$$0 \leq w_{ij} \leq 1$$

$$\sum_{j} w_{ij} = 1$$

How the model is specified impacts w_{ii} the extent to which ego weighs own current opinion and the relative weight of alters

February 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon			
Alternative W's			
			Self weight:
1 2	1 2 3 4 1 1 1 1 0 2 1 1 1 0 3 1 1 1 1 4 0 0 1 1	1 2 3 4 1 .33 .33 .33 0 2 .33 .33 .33 0 3 .25 .25 .25 .25 4 0 0 .50 .50	Even
3 🖒	1 2 3 4 1 2 1 1 0 2 1 2 1 0 3 1 1 2 1 4 0 0 1 2	1 2 3 4 1 .50 .25 .25 0 2 .25 .50 .25 0 3 .20 .20 .40 .20 4 0 0 .33 .67	2*self
61808 Orto	1 2 3 4 1 2 1 1 0 2 1 2 1 0 3 1 1 3 1 4 0 0 1 1	1 2 3 4 1 .50 .25 .25 0 2 .25 .50 .25 0 3 .17 .17 .50 .17 4 0 0 .50 .50	degree
February 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU 10			

IST institute for SOFTWARE RESEARCH

Social Influence Cont.

$$\mathbf{Y}^{(t)} = \alpha \mathbf{W} \mathbf{Y}^{(T-1)} + (1-\alpha) \mathbf{Y}^{(1)}$$

When interpersonal influence is complete, model reduces to:

$$\mathbf{Y}^{(t)} = 1\mathbf{W}\mathbf{Y}^{(T-1)} + 0\mathbf{Y}^{(1)}$$
$$= \mathbf{W}\mathbf{Y}^{(T-1)}$$

When interpersonal influence is absent, model reduces to:

$$\mathbf{Y}^{(t)} = 0\mathbf{W}\mathbf{Y}^{(T-1)} + \mathbf{Y}^{(1)}$$

 $= \mathbf{Y}^{(1)}$

February 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

11

Carnegie Mellon

ISC institute fo

Extending Social Influence Over Time

If we allow the model to run over t, we can describe the model as:

$$\mathbf{Y}^{(\infty)} = \alpha \mathbf{W} \mathbf{Y}^{(\infty)} + (1 - \alpha) \mathbf{X} \mathbf{B}$$

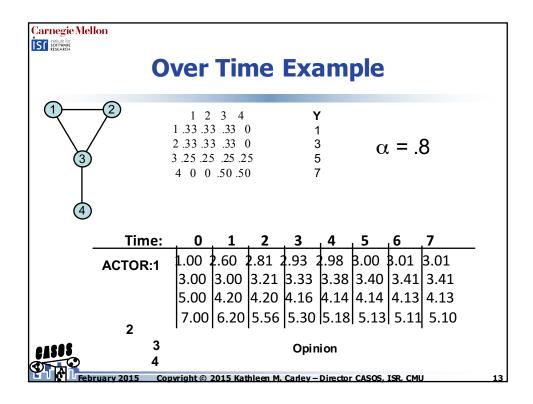
The model is directly related to spatial econometric models:

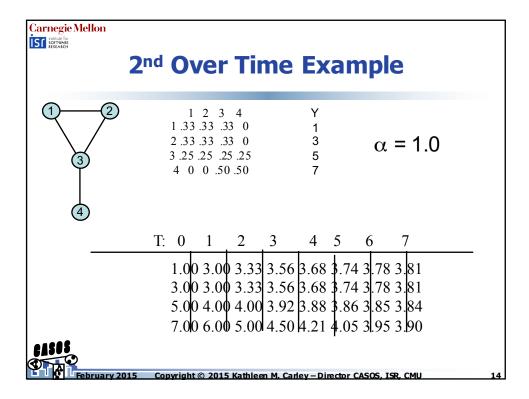
$$\mathbf{Y}^{(\infty)} = \alpha \mathbf{W} \mathbf{Y}^{(\infty)} + \widetilde{\mathbf{X}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

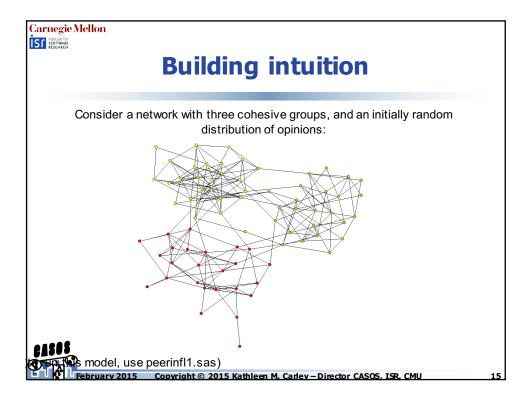
Where the two coefficients (a and b) are estimated directly

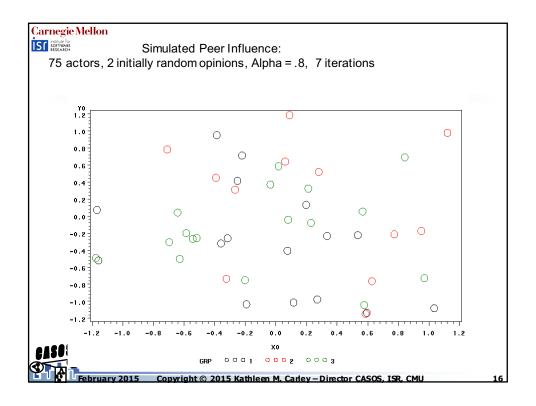
Doreian, 1982, Sociological Methods and Research

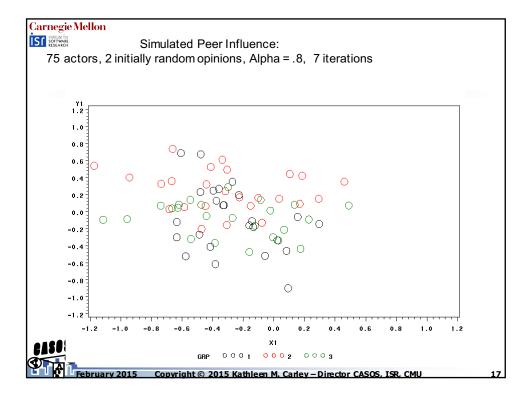
ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

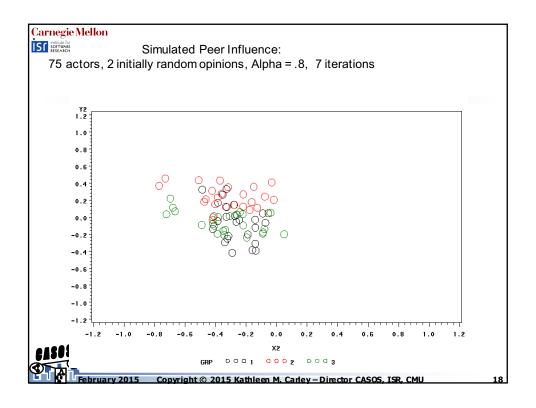


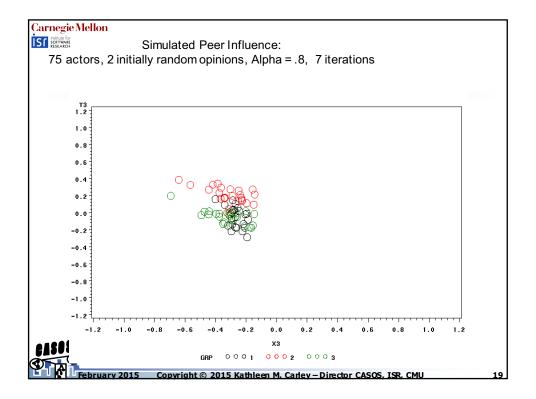


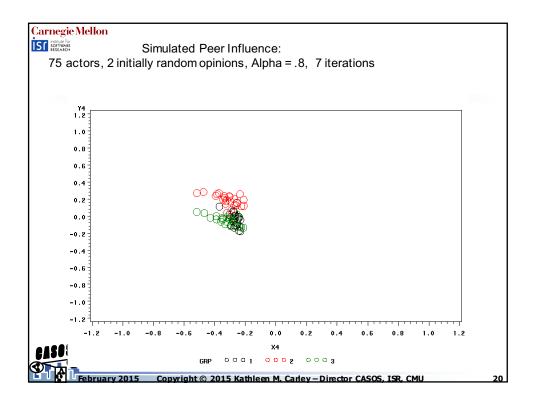


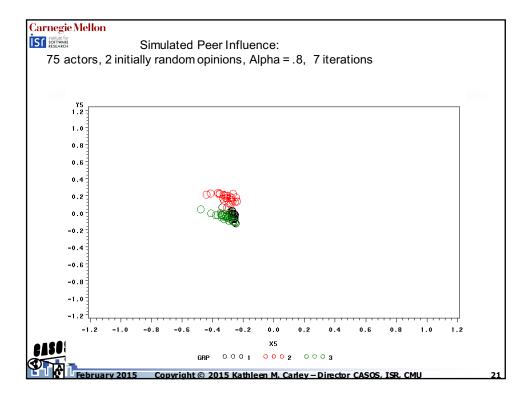


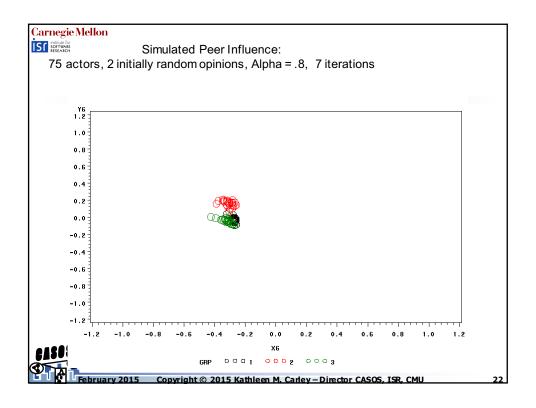


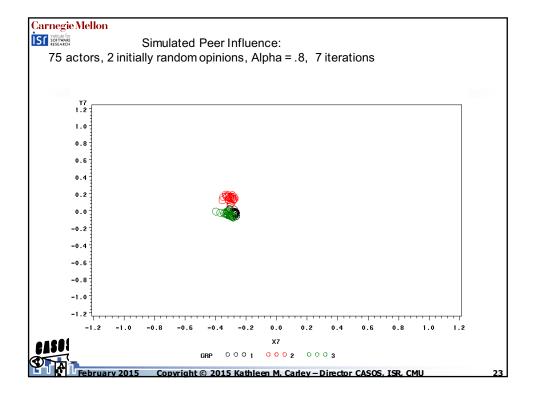












Friedkin

- Freidkin claims in his *Structural Theory of Social Influence* that the theory has four benefits:
 - -relaxes the simplifying assumption of actors who must either conform or deviate from a fixed consensus of others (public choice model)
 - Does not necessarily result in consensus, but can have a stable pattern of disagreement
 - -Is a multi-level theory:
 - micro level: cognitive theory about how people weigh and combine other's opinions
 - macro level: concerned with how social structural arrangements enter into and constrain the opinion-formation process
 - Allows an analysis of the systemic consequences of social structures

References

- Friedkin, N. E. 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity." *Sociological Methods and Research* 12:235-61.
- Friedkin, N. E.. 1998. *A Structural Theory of Social Influence*. Cambridge: Cambridge.
- Friedkin, N. E. and E. C. Johnsen. 1990. "Social Influence and Opinions." *Journal of Mathematical Sociology* 15(193-205).
- Friedkin, N. E. and E. C. Johnsen. 1997. "Social Positions in Influence Networks." *Social Networks* 19:209-22.

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

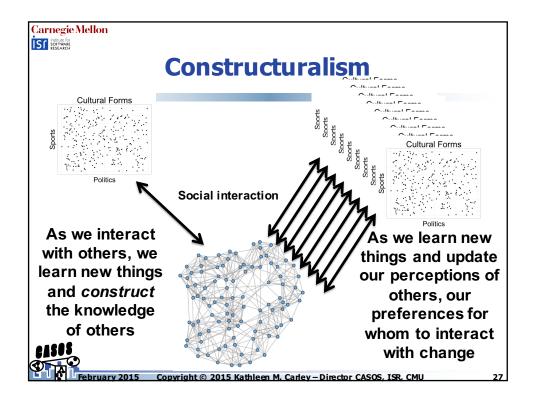
25

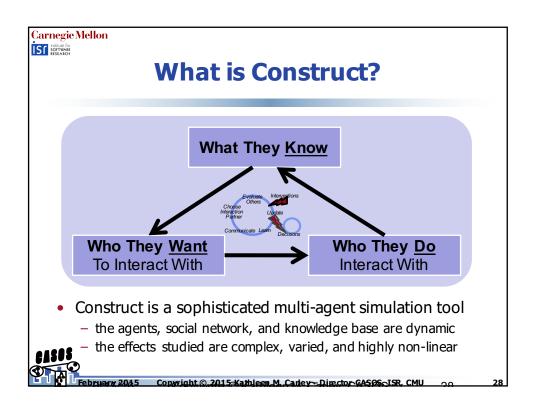
Carnegie Mellon

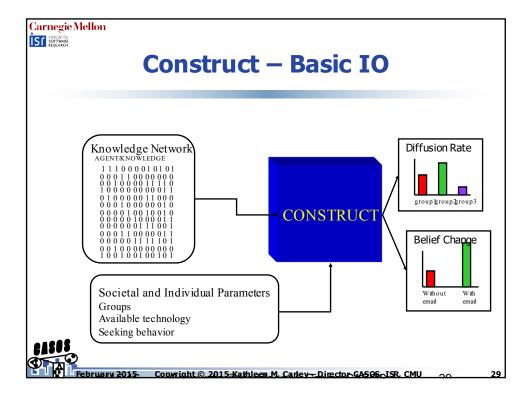
Construct

- Turn-based Dynamic-Network Agent-Based simulation model for examining information diffusion and social change
- First multi-agent network model in socio-cultural area
- Features
 - Co-evolution of social structure and culture
 - Co-evolution of agents and their societies
 - Co-evolution of social and knowledge networks
 - Agents learn through interaction
 - Agents need not be "people"
 - Multi-fidelity input is possible
 - Exact knowledge network
 - Group level probabilities
- Refactored in 2009 to use modern agent-based techniques and in 2012 into a "multi-level" system

ruary 2015 Copyright @ 2015-Kathleen M. Carley-- Director GASOS ISR. CMU







Carnegie Mellon Knowledge level approach to culture

- Cognitive mediation
- Extension of network analysis to knowledge
 - Theory of network change, with co-evolution of structure and culture
- Culture:
 - The snapshot distribution of knowledge
 - The enactment resultant procedures and actions
 - Mechanism concurrent learning of multiple pieces of information leads to differential rates of diffusion, consensus, performance, social stability depending on the specific distribution of knowledge that emerge
- Co-evolution: structure and culture, interaction and knowledge
 - Unanticipated impacts of IT at cultural level

Copyright @-2015 Kathleen M. Garley - Director GASOS-JSR -SMU

Carnegie Mellon IST institute for SOFTWARE RESEARCH

The bare-bones Construct model

- Agents
 - All human
 - Interact only via relative similarity
 - Have transactive memory
- Knowledge is a binary string AKik
 - If AKik=1 i knows k, else 0
 - Who knows what
 - Knowledge is task knowledge
 - Shared knowledge
 - If Akik=1 & Akjk = 1 then k is shared

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon IST institute for SOFTWARE RESEARCH

Internal Mechanisms

- Communicate
 - Randomly pick information they know
 - Messages simple or complex
- Learn
 - Learning by being told
- Reposition
 - Relative similarity
- Choose partner
 - Need for communicative ease
 - Need to know

When Two Agents Interact

- If they can send
- They select message to communicate from the facts they know
- Message = 1 "fact" a "k"
- All facts equally likely to be selected to communicate
- If the agent can receive the agent learns the communicated fact just in case they didn't already know it

February 2015

Copyright © 2015-Kathleen M. Carlev-Director GASOS ISR. CMU

22

Carnegie Mellon

Construct V1 Model

ACTION

 $Interact_{ij}(t) = f(Availability_i(t), ProbInteract_{ij}(t))$

 $Communicate_{jik}(t) = f(ProbInteract_{ij}(t),AK_{jk})$

ADAPTATION

$$AK_{i*}(t+1) = AK_{i}(t) + Communicate_{jik}(t)$$

MOTIVATION

$$ProbInteract_{ij}(t) = \frac{SharedFacts_{ij}(t)}{\sum\limits_{h=1}^{I} ShareFacts_{ih}(t)}$$

2015 Copyright @-2015 Kathleen M. Garley. - Director CASOS IGR 6M

Interaction Style - Need for Communicative Ease

- Relative similarity = how much i shares with j divided by how much i shares with all others
- AKik is knowledge network
 - Knowledge network is agent by knowledge ("facts")
- Expected interaction based on relative similarity

$$RSij = \frac{\sum_{k=0}^{K} (AKik * AKjk)}{\sum_{i=0}^{K} \sum_{k=0}^{K} (AKik * AKjk)}$$

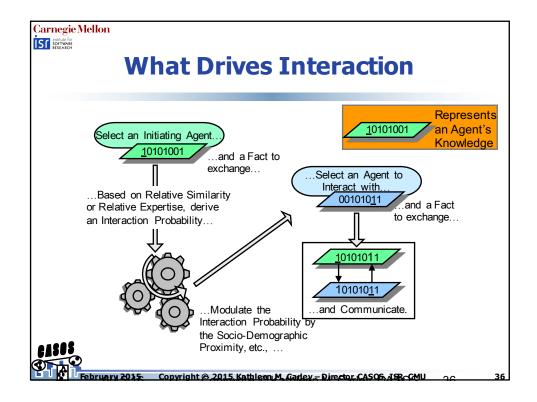
$$I = max \ number \ of \ agents \ K = max$$

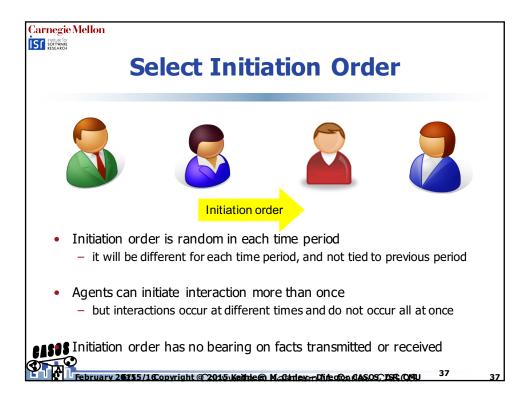
$$number \ of \ Global \ Cutoff = \sum_{i=0}^{L} \sum_{j=0}^{L} RSij \ / (I * (I - 1))$$

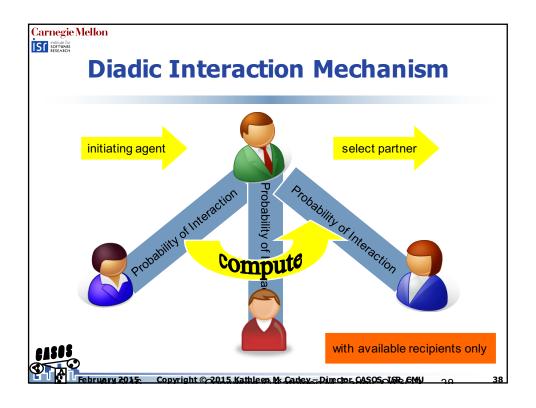
$$ideas, facts, \\ pieces \ of \\ knowledge \ else \ 0$$

$$If \ RSij \ge Cutoff \ the \ Expected \ interaction = 1$$

$$knowledge \ else \ 0$$

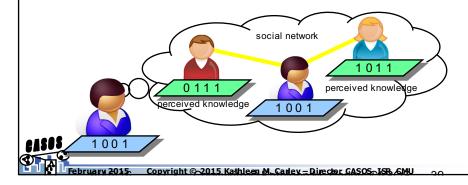






Human Agents Are Boundedly Rational

- Agents in Construct are boundedly rational actors
 - their cognitive abilities are bounded, meaning that they cannot possess or process all information about others perfectly
 - their social abilities are also bounded, meaning that they may not possess or process all information about their social setting



Carnegie Mellon

IST institute for SOFTWARE RESEARCH

Information Diffusion

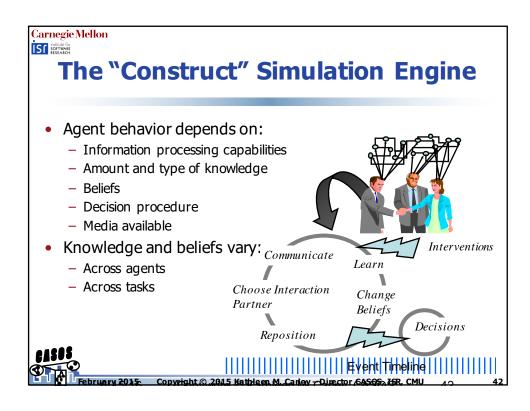
- Information Diffusion: The process by which knowledge moves through a social group
 - Knowledge can be of varying "sizes" but the "size per bit" should be consistent in each simulation. "James was seen with Sally at Seviche" can be a knowledge bit, as can "F-22 Pilot Operations", but they should not be the same number of bits inside the same simulation.
 - Social Groups are defined by the networks of interacting actors.
 This makes the simulation **network-centric**.

uary 2015 Copyright @-2015 Kathleen M. Garley - Director GASOS-IGR GMU

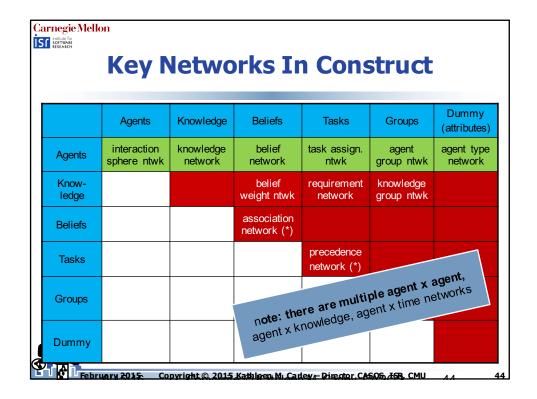
Measuring Stability

- Model generates new meta-matrix each time period
- Quiescence no change occurs in this meta-matrix
- If forgetting or personnel change or ... quiescence cannot occur
- Relative stability lack of radical changes behavior is same on average during a window
- Even without forgetting etc. time between 90% and 100% arbitrary – depending on the chance of the last fact being communicated
- Stability is reached when at 90% of final value is good compromise

bruary 2015 Copyright @-2015 Kathleen M. Carley - Director GASOS ISR &MU



Carnegie Mellon IST institute for SOFTWARE RESEARCH **Multi-Level Behavior and** Responses **Model Primitives** Individual Collective Agents Groups Social Structure Interaction - The network Cognitive limitations Culture Behavioral limitations - Shared beliefs Social limitations - Shared knowledge Knowledge - Transactive memory **Beliefs** Decisions Risk taking Timing February 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ASR. CMU



Belief Dispersion

- Belief Dispersion: The change in beliefs of actors in a social group over time.
 - Beliefs cannot be evaluated for truth.
 - Knowledge can contribute to or deny a belief.
 - Belief: "Cats are better house-pets for a family than dogs."
 - Supporting Evidence: "Cats tend to live longer than most breeds of dog."
 - Contrary Evidence: "Most cats must have explicit socialization training early if they are going to be as affectionate as most breeds of dogs."

bruary 2015 Copyright @-2015 Kathleen M. Carley - Director CASOS ISB SML

45

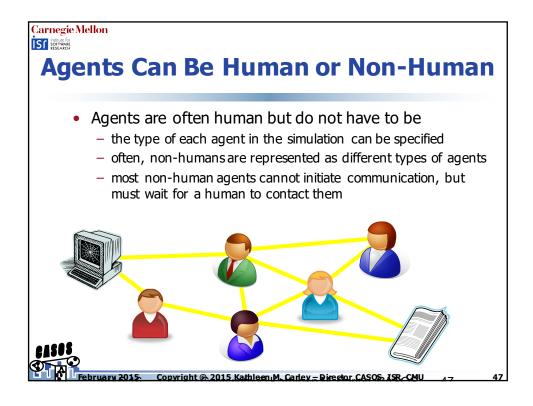
Carnegie Mellon

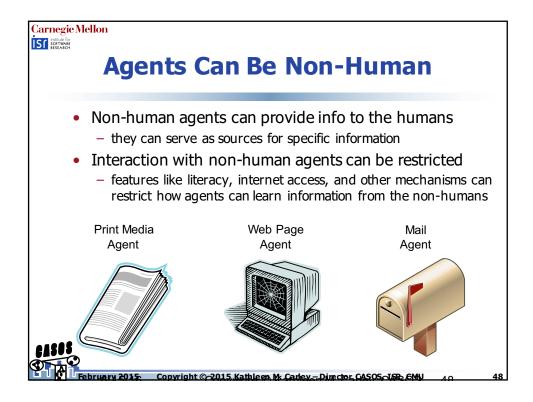
Agents

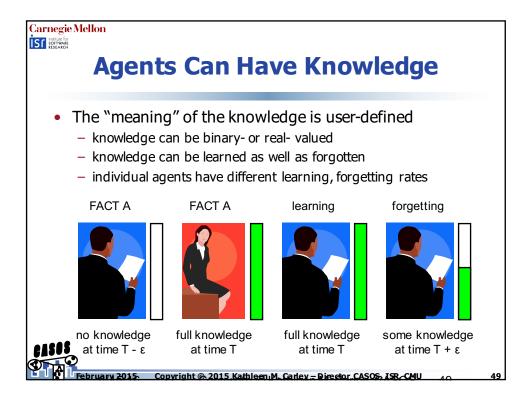
- Agents are information processors (IP)
 - Learn
 - Communicate send information
 - Make decisions
 - Initiate interaction
 - Process information
 - Forget
- Information Technologies are agents
- Information Technologies are enhancers to agents
- Agents have knowledge
 - What agents do is a function of IP capabilities and amount of knowledge
- There are classes of agents
 - Agent classes vary based on processing capabilities
 - Humans learn, process, initiate interaction, send, forget, 1:1
 - Databases learn, process, send, 1:1
 - Books send,

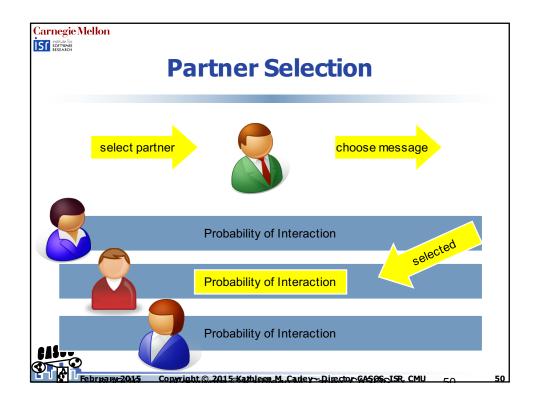
uary 2015 Copyright @ 2015 Kathleen McCadey - Director CASOS ASR-CMB

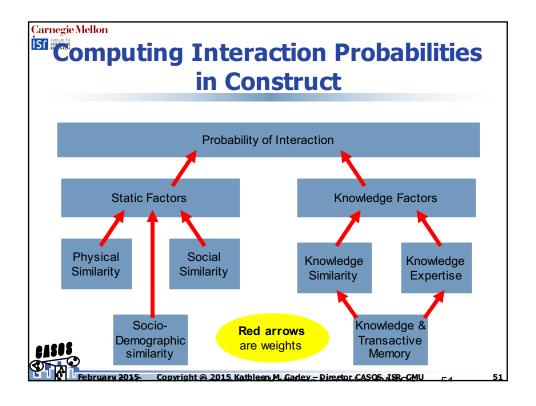
1:N

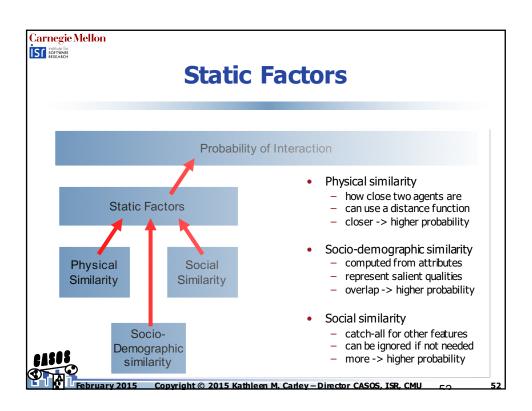


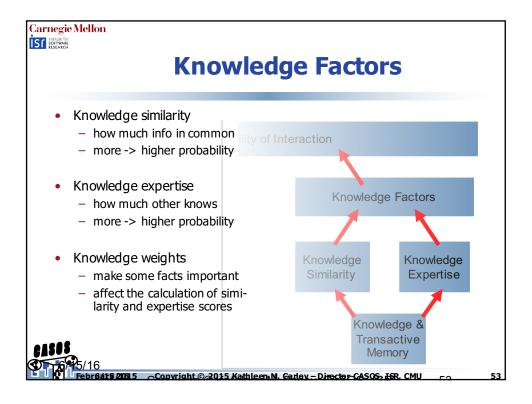


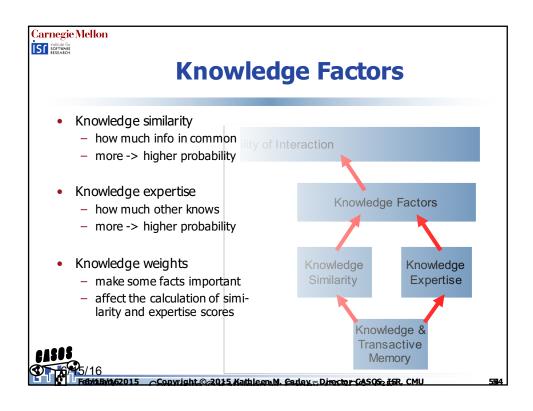


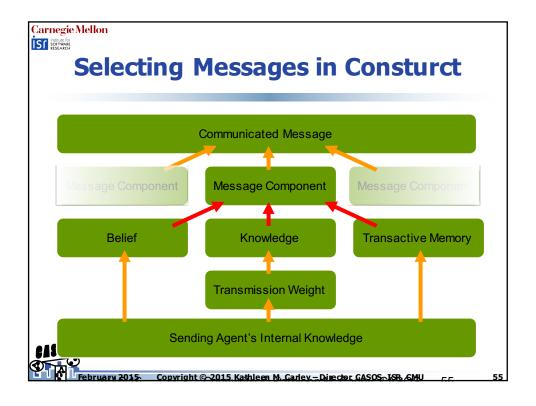


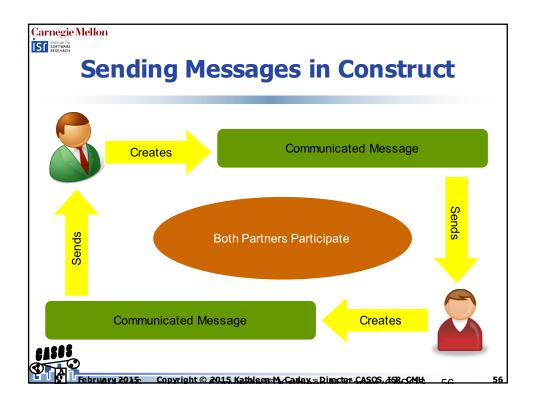


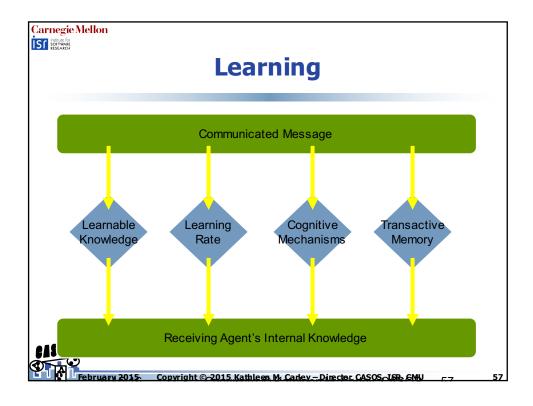


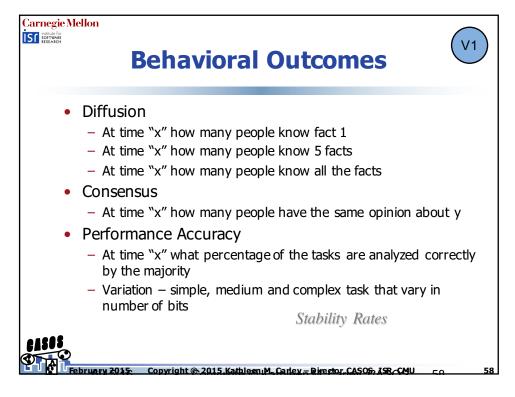












Accuracy

- Task is a binary classification task
 String of 1's and 0's
- Goal is to determine if there are more 1's or 0's
- The task string = the number of facts
- Each person observes those task bits for which they have information
 - If individual knows Sik then individual can read Tjk
- If for the bits observed the person see's more 1's than 0's then decide 1 else 0
- The group's decision is the majority decision
- The true answer is calculated given the actual task bit strength
- Performance accuracy is percentage correct across 25 tasks each time period

February 2015 Copyright @-2015 Kathleen M. Carley - Director CASOS ISB 6MU

5

Carnegie Mellon
IST 1997-05

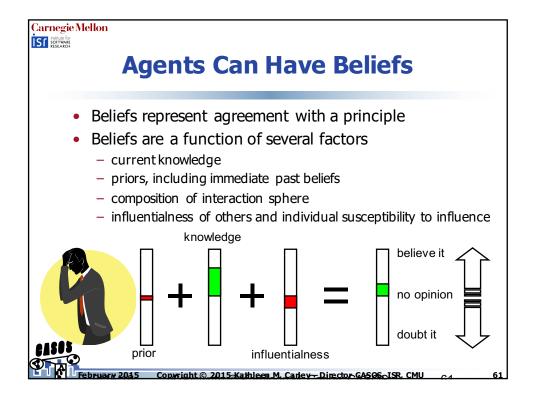
Agents Can Perform Tasks

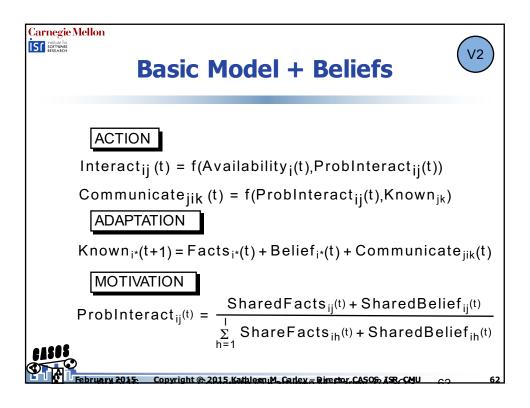
XX1XX0X1

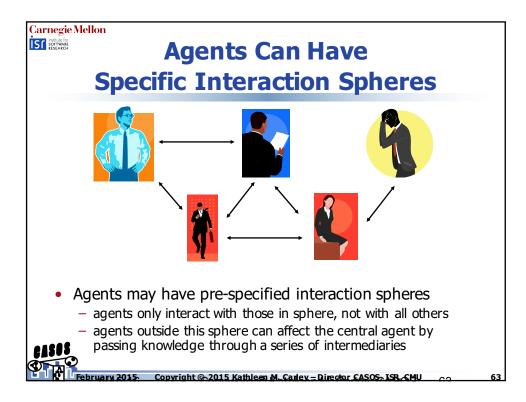
- Agents compare their knowledge with pre-defined truth
 - if agents have relevant knowledge, they use it in the task
 - if agents lack a piece of knowledge, they guess
 - multiple agents can collaborate on a task
 - collaboration on tasks can increase similarity among agents

orugry 2015 Copyright @ 2015 Kathleen M. Carley - Director CASOS ISR-CMU

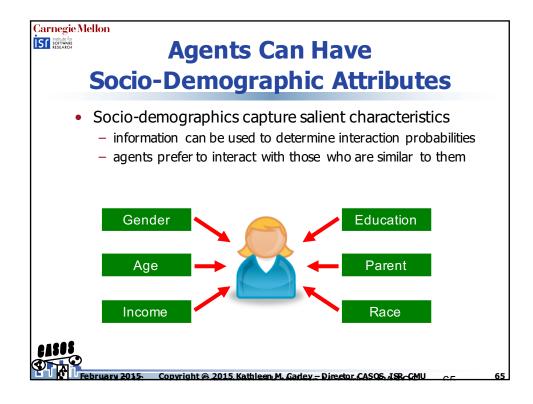
--

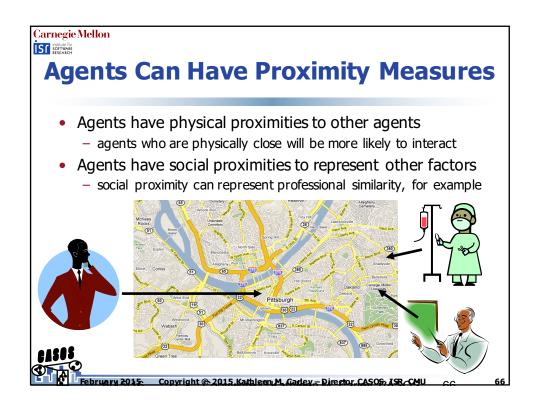


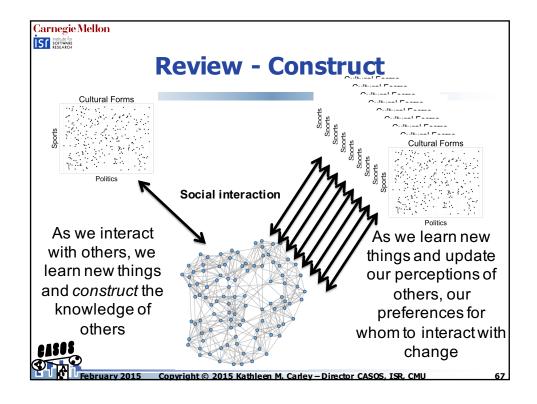




Agents Can Interact Multiple Times • Agents can initiate or receive communication (or both) - initiators actively seek out interaction partners - receivers passively wait for an initiator to contact them - Interactions result in an exchange of knowledge, beliefs, or TM • Some agents initiate or receive multiple times



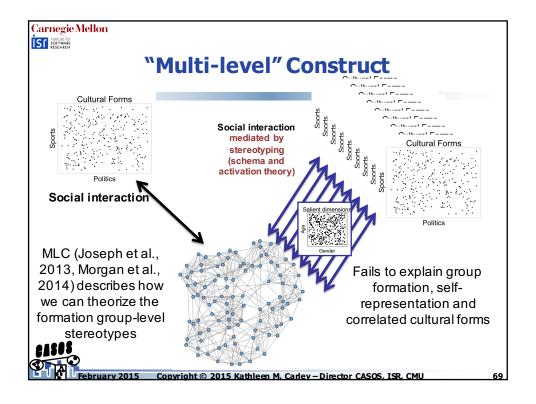


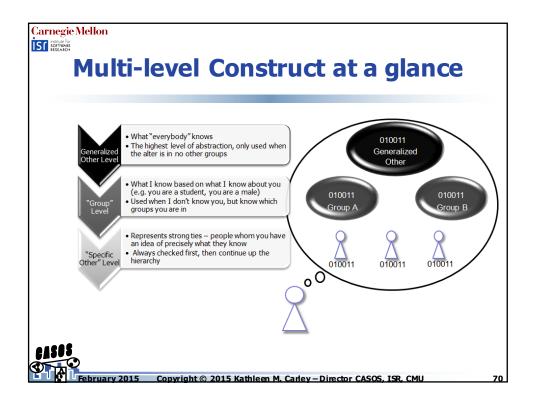


Is there anything wrong with Construct?

- Socially Unrealistic
 - Effective "working memory" has so far been shown to be a narrowly bounded property- maintaining an accessible store of knowledge for all of these alters ascribes too much cognitive power.
 - Also...?
- Computationally Infeasible (at city-scale!)
 - Unless interaction spheres are severely restricted, remembering all similarity/expertise bits will rapidly exceed working memory
- Result is smaller simulations with highly restricted interaction spheres

uary 2045,4 o Copyright @ 2015. Kathleen M. Carley - Director CASOS, ISR. CMU





How Does Construct Compare to **Other Similar Models?**

- Construct is a social network simulator
 - it is one of many tools developed to understand how individuals and societies evolve in complex settings
 - Construct focuses on modeling realistic social networks, and strives to model the connections as accurately as possible
- Construct is a meso-level social simulation model
 - it has strong representation of cognitive properties, though it is not a cognitive architecture per se like SOAR or ACT-R
 - it also has support for a large number of interacting agents, though it is not a swarm-like model like SWARM
 - thus, Construct provides the best of both worlds, as it allows for cognitive agents to interact in complex social environments
- Construct is a turn and agent-based simulation tool, useful for modeling information and belief diffusion.

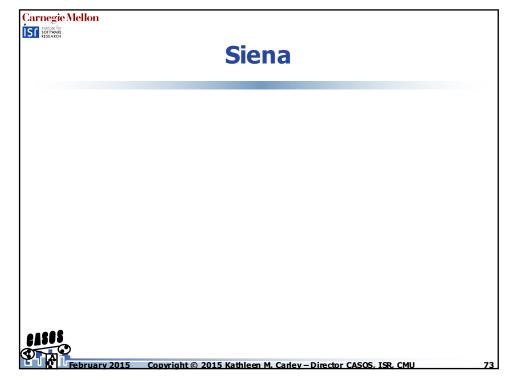
bruary 2015 Copyright © 2015-Kathleen M. Carley- Director GASOS ISR. CMU

Carnegie Mellon IST institute for SOFTWARE RESEARCH

References

- Kathleen M. Carley, Michael K. Martin and Brian Hirshman, 2009, "The Etiology of Social Change," Topics in Cognitive Science, 1.4:621-650. DOI: <u>10.1111/j.1756-8765.2009.01037.x</u>
- Kathleen M. Carley, 1991, "A Theory of Group Stability," American Sociological Review, 56.3: 331-354. Available from: http://www.jstor.org/stable/2096108. Reprinted in Organizational Networks Research, 2011, Martin Kilduff Diageo & Andrew V. Shipilov (Eds), Sage.
- Kathleen M. Carley, 1990, "Group Stability: A Socio-Cognitive Approach," Advances in Group Processes: Theory and Research. Edited by Lawler E., Markovsky B., Ridgeway C. and Walker H. (Eds.), Vol. VII. Greenwhich, CN: JAI Press, 7: 1-44.

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU



Sienna Assumptions

- Actors have agency which allows them to change:
 - Their **outgoing links** (create new ones, dissolve existing ones, do nothing)
 - Their **attributes** (increase/decrease/keep levels, change/keep categories)
- All actors have **full knowledge** about the network & attributes of others.
- Ties are not transient events,
 - Ties are **states**, relatively stable with a tendency to endure over time.
- The changing network is seen as an outcome of a Markov process:
 - the current state of the network (not past ones!) probabilistically predicts its next state.
- Continuous time parameter t observed at K discrete moments t1, t2... tK
- Observation 1 is not modeled it is the process starting value.
- At any given time, one probabilistically selected actor gets the opportunity to change an outgoing tie (add new, drop existing, do nothing).

bruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon IST institute for

Basic Approach

- Assume a network of size **n** observed at **k** points in time.
- What are the **mechanisms** driving the **network change** over time?
 - How does the network structure influence actor characteristics over time?
 - Think about it theoretically
- Given those mechanisms, what are the **effects** we should include: structure (e.g. transitivity), covariates (e.g. homophily), behavior (e.g. influence) What network metrics should you include
- Simulate networks based on initial parameter values.
 - Compute statistics for the simulated networks and compare with those from the observed
 - Update parameter values to make the average of simulated statistics as close as possible to the statistics obtained from the observed network.
- Generate networks based on final parameter estimates.
 - Use those to check that the average statistics are close to the observed (target) values.
 - Calculate a convergence t-ratio for deviation between the two.
- You check **goodness of fit** with regard to **auxiliary statistics** ones not included in rhw model.
 - If the model is good, the simulated networks will be similar to the observed one.
 - You want no significant difference.

bruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Carnegie Mellon IST institute for SOFTWARE RESEARCH

Change Determination

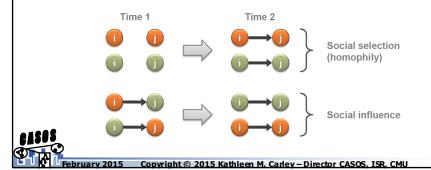
- Network evolution is modeled in small units: micro-steps (one actor, one tie change).
- The change depends on two functions:
 - Rate function when (how often) can actor i make a decision? Models the speed with which the dependent variable will change.
 - **Objective function** what decision will actor **i** make? Tells us how likely an actor is to change the network in a particular way.
- The **Objective function** can be defined as the sum of:
 - Evaluation Function evaluate the network after adding a tie
 - Endowment function evaluate the network after dissolving a tie
- Issue the dissolution of a tie may not be the opposite of creating one.

 e.g. the benefit of creating a reciprocal ties could be smaller than the loss associated with dissolving a reciprocal tie

Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Social Selection, Social Influence

- Social selection: Bob & Jane become friends because they share certain characteristics
- Social influence: Because they are friends, Bob comes to share Jane's characteristics
- The two are very difficult to distinguish looking at a single point in time



Carnegie Mellon

Where to Get Siena

Siena: www.stats.ox.ac.uk/~snijders/siena

- · Maintained by Tom Snijders, University of Oxford
- RSiena Manual
- RSiena sample scripts
- RSiena package on CRAN
- RSienaTest on R-Forge

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CMU

Comparison to SIENA/ergm

- SIENA assumes an actor-oriented model.
- Actors have a series of objective functions they seek to optimize, as well as co-variates.
- The logit probability of a link is a function of actor objective functions and covariates.
- If only one observed network is present (cross sectional) then an ergm is used.
- This approach does not model the data, rather it seeks to identify when network behavior changes from some dynamic equilibrium.

ebruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CML

70

Carnegie Mellon

Comparison to SIENA/ergm

- Stability: LPM, ergm, repeated measures
- Evolution: SIENA, multi-agent simulation, or both
- Shock: Change detection in real-world applications
 Multi-agent simulation for experimentation
- Mutation: Change detection coupled with SIENA for real world applications
 Multi-agent simulation for experimentation

bruary 2015 Copyright © 2015 Kathleen M. Carley – Director CASOS, ISR, CM

